

Is one of the treatments better? Significance tests

Rothamsted School

- Leading statisticians such as Fisher, Yates, Nelder, Bailey, Payne
- Developed analysis of variance not in terms of linear models but in terms of symmetry
- High point was John Nelder's theory of general balance (1965)

General Balance

- 1) Establish and define block structure
- 2) Establish and define treatment structure
- 3) Given randomisation, the analysis then follows automatically

(C)Stephen Senn 2022-2023

Wilkinson & Roger Notation in three packages

Term	GenStat [®]	R	SAS®
Main effects	A, A + B etc	A, A+ B etc	Α, Α Β
Interactions	A.B, A.B.C etc	A:B, A:B:C etc	A*B, A*B*C
Nested	A/B, A/B/C etc	A/B, A/B/C etc	B(A), C(B(A)) ?
Main effect plus interactions	A*B=A+B+A.B A*B*C=A+B+C+A.B+A.C+ B.C+A.B.C	A*B=A+B+A:B A*B*C=A+B+C+A:B+A:C+ B:C+A:B:C	A B = A B A*B A B C=A B C A*B A*C B*C A*B*C
Subtracting effects	A*B*C-A.B.C= A+B+C+A.B+A.C+B.C	A*B*C-A:B:C= A+B+C+A:B+A:C+B:C	A B C@2= A B C A*B A*C B*C

NB I am never very confident about the SAS® form

(C)Stephen Senn 2022-2023

			Treatme	ent			
Patient	A	в	Α	В	A	В	
1	1	2	3	4	6	5	
	2394	2686	2515	2675	2583	2802	Simulated FEV, values in
2	2	1	3	4	6	5	from a corrige of n of 1 tr
	2746	2726	2592	2867	2743	2742	from a series of n of 1 tr
3	1	2	3	4	6	5	
	2668	2560	2542	2584	2491	2737	
4	1	2	3	4	6	5	The surderlined set we have a
	2397	2696	2411	2895	2499	2760	The underlined values w
5	2	1	3	4	5	6	treated as missing in sor
	3179	3221	2952	3096	2600	3192	subsequent analyses
6	1	2	4	3	5	6	subsequent analyses
	2643	2496	2759	2847	2651	2860	
7	1	2	3	4	5	6	
	2678	2843	2492	2763	2801	2890	
8	2	1	3	4	5	6	
	2887	2862	2875	3083	2689	2967	Araujo A, Julious S, Senn S.
9	2	1	3	4	6	5	Understanding Variation in S
	2490	2841	2648	3044	2688	2914	
10	2	1	3	4	6	5	N-OT-1 Irlais.
	2268	2576	2413	2493	2344	2699	PloS one. 2016;11(12):e0167
11	2	1	4	3	6	5	
	2617	2923	2629	2832	2732	2866	
12	1	2	4	3	5	6	
	2627	2759	2712	2698	2572	2826	

The general balance approach in GenStat®

BLOCKSTRUCTURE Patient/Cycle TREATMENTSTRUCTURE Treatment ANOVA[FPROBABILITY=YES;NOMESSAGE=residual] Y

Analysis of variance

Variate: FEV₁ (mL)

Source of variation	d.f.	S.S.	m.s.	v.r.	F pr.
Patient stratum Patient.Cycle stratum Patient.Cycle.*Units* str	11 24 atum	1458791. 316885.	132617. 13204.	10.04 1.04	
Treatment Residual Total	1 35 71	641089. 443736. 2860501.	641089. 12678.	50.57	<.001
		(C)Stephen Sen	n 2022-2023		21

Parameter	estimate	s.e.	t(35)					
Constant Detiont 2	2445.6	80.7	30.30					
Palieni Z	190.	113.	1.74					
Patient 12	153.	113.	1.36					
Patient 1 .Cycle 2	55.	113.	0.49					
Patient 12 .Cycle 3	6.	113.	0.05					
Treatment B	188.7	26.5	7.11					
Parameters for factors Factor Re Patient 1	s are differen eference leve	ces comp I	pared with	the refe	rence l	evel:		

Analysis of var	iance					
Variate: FEV ₁ (mL)						
Source of variation	d.f.	S.S.	m.s.	v.r.	F pr.	
Patient stratum	11	1458791.	132617.	10.04		
Patient.Cycle stratum	24	316885.	13204.	1.11		
Patient.Cycle.*Units* str Treatment Patient.Treatment Residual	ratum 1 11 24	641089. 159516. 284219.	641089. 14501. 11842.	54.13 1.22	<.001 0.324	
Total	71	2860501.				
	(C)Stepl	1en Senn 2022-2023				30

5 6 7 8 9 10 11 12 <i>Fixed</i>	348.0 88.85 259.3 88.85 50.0 88.85 175.0 88.85 153.7 88.85 24.3 88.85 214.3 88.85 124.0 88.85 188.7 25.65	(-114.15, 234.2) (173.85, 522.2) (85.18, 433.5) (-124.15, 224.2) (0.85, 349.2) (-20.48, 327.8) (150.18, 498.5) (73.52, 421.8) (40.18, 388.5) (-50.15, 298.2) (138.45, 239.0)	are an the same. This is because the same amount of information is available for each patient and we have used a pooled estimate of variance.	
---	---	--	---	--

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

One important difference to conventional meta-analysis

- In a conventional meta-analysis the variance would be estimated independently within each trial
- Here a pooled variance has been used
- Because the degrees of freedom are so few, independent variance estimation would be a bad idea
- Even when true variances are identical they can easily vary randomly very greatly as the next slide shows
- This shows the probability that the highest to lowest will vary by a ratio of at least 10 to 1 as a function of the number of patients and for two cases
 - Degrees of freedom = 2 and Degrees of freedom =4

Senn SJ. Letter to the Editor: in defence of the linear model. Controlled clinical trials. 2000;21:589 - 592.

(C)Stephen Senn 2022-2023

